Machine Vision and Perception Group Department of Informatics

Darius Burschka Technische Universität München

Research of the MVP Group http://www6.in.tum.de/burschka/mvp

Perception for manipulation

Visual navigation

Biologically motivated perception

Rigid and Deformable Registration

The Machine Vision and Perception Group @TUM works on the aspects of visual perception and control in medical, mobile, and HCI applications

Exploration of physical object properties

Photogrammetric monocular reconstruction

Visual Action Analysis

Visual Localization for hybrid Environmental Modeling

Real-Time Localization

The high accuracy allows direct stiching of images along the trajectory without bundle adjustment

Resulting hybrid (appearance and geometry) model allows path planning and prediction of sensor views for e.g. attention research

Example of a hybrid model reconstruction

Result of a visual localization

6DoF pose of the robot is calculated fom single camera view

Reconstruction of a hybrid (appearance/geometry) model

Visual Homing

- (a) $I_{1.1}$ and $I_{1.2}$
- (b) $I_{1.1}$ and $I_{2.1}$

The system is capable of registration to previously observed trajectories

Biologically Motivated Navigation

Perception-based loop closure

Work on Optimal Sensor Models

Knowledge Representation

- Atlas:
 - Long-term memory
 - Experience of the system
- Working memory:
 - Short-term memory
 - Experience grounded in a given environment
- Temporal handling information

Indexing of the Atlas information from 3D perception

Real-world scenario

scene setup

input point cloud

recognized models

Algorithm Description (Model Preprocessing Phase)

 \mathbf{n}_{2} $\beta \qquad \mathbf{p}_{2}$ \mathbf{p}_{1}

• For all pairs of surflets at distance *d* insert the triple

$$\left(\boldsymbol{\alpha}$$
 , $\boldsymbol{\beta}$, $\boldsymbol{\measuredangle}(\boldsymbol{n}_{1}, \boldsymbol{n}_{2})
ight)$

plus a pointer to its model in a hash-table.

• Do this for all models using the same hash-table.

3D Object Recognition

- Challenges
 - -Incomplete Data
 - -Noise and outliers

Online Recognition Phase

• For each model surflet pair $((\tilde{p}_1, \tilde{n}_1), (\tilde{p}_2, \tilde{n}_2))$

in the hash-table cell:

Compute the rigid transform *T* that $(\tilde{p}_1, \tilde{n}_1), (\tilde{p}_2, \tilde{n}_2))$

$$\rightarrow (\boldsymbol{p}_1, \boldsymbol{n}_1), (\boldsymbol{p}_2, \boldsymbol{n}_2))$$

model hash-table

 \boldsymbol{n}_1

 \boldsymbol{p}_1

 \boldsymbol{p}_2

Online Recognition Phase

• Check if *T*(M) matches the scene.

 $\hat{\boldsymbol{v}}_2$

 \tilde{n}_{2}

M is the model of $((\tilde{\boldsymbol{p}}_1, \tilde{\boldsymbol{n}}_1), (\tilde{\boldsymbol{p}}_2, \tilde{\boldsymbol{n}}_2))$

 \tilde{n}_1

 $\widetilde{\boldsymbol{p}}_1$

model hash-table

n₁

 \boldsymbol{p}_1

 \boldsymbol{p}_2

Example of the System in Action

How to reconstruct 3D under poor texture condition?

Problem: texture information is more sparse

What can we do if the texture information is almost non-existent?

\rightarrow photogrammetric approach

Intensity-Based Methods

- Established 3D reconstruction methods:
 - Rely on presence of many reliable features
 - May perform very poor if this prerequisite is not met
 - Medical images are typically problematic
- Solution approach: Intensity based methods
 - Do not exclusively rely on salient image regions
 - Shaded regions, e.g., also contain information
 - Use all information that is there

Intensity-Based Bundle Adjustment

• Regular Bundle Adjustment equation:

 $\min_{\boldsymbol{a},\boldsymbol{b}} \sum_{i=1}^{n} \sum_{j=1}^{m} d\left(\boldsymbol{Q}\left(\boldsymbol{a}_{j}, \boldsymbol{b}_{i}\right), \boldsymbol{x}_{i,j}\right)$

- Finds camera parameters *a* and point coordinates *b*
- Minimizes feature reprojection error $\min_{a,b} \sum_{i=1}^{m} \sum_{j=1}^{m} d(I_j(Q(a_j, b_i)), I_0(p_i))$
- Intensity-Based Bundle Adjustment:
- Uses a regularizer: b now describes a smooth surface
- Apart from that: Same, but minimizes intensity error

Reconstruction Example

 Works well under static lighting conditions and roughly Lambertian surfaces

Ruepp and Burschka. Fast recovery of weakly textured surfaces from monocular image sequences. ACCV 2010

Estimation of Physical Properties in Predict-Act-Perceive loop

Estimation of the Center of mass

Estimation of Mass and Friction Force

Estimation of Mass Distribution

Knowledge Representation in WP5

Defining Foreground: Shape Matching

Indexing to the Atlas database needs to be extended to object classes

-> deformable shape registration needed (ACCV2010 - oral)

Object Container Orientation

Max. allowed acceleration

Mass

Center of gravity

Functionality Map

Location Areas

Connection Properties Pushed vs. lifted objec

- Arbitrary movement vs movement with a goal
- **Connection relevance**
- Velocity constraint during pick-up
- Grasp taxonomy Approach vector

Basic Experiments: Location Areas (Tracking Data)

Legend:

- Location Area i with
- its corresponding center
- C_i_j Connecting edge from Location Area i to j

MVP

Basic Experiments: Functionality Maps (Tracking Data)

Red = goal, green = push, magenta = arbitrary

Entire System: Exemplary Trajectories

